Get Started with Testbase
This quickstart guide will have you running your first computer agent in under a minute. We’ll create a simple agent, execute a task, and see how session continuity works automatically.
Prerequisites
- Node.js 18+
- OpenAI API key
- A git repository to work in (required for computer agents)
Installation
cd computer-agents
pnpm install
pnpm buildYour first agent (30 seconds)
1. Set your API key
export OPENAI_API_KEY=sk-...2. Create a basic computer agent
Create a file called my-first-agent.mjs:
import { Agent, run, LocalRuntime } from 'computer-agents';
const agent = new Agent({
name: 'Developer',
agentType: 'computer',
runtime: new LocalRuntime({
debug: true // See execution details
}),
workspace: './my-project', // Must be a git repo
instructions: 'You are a software developer. Write clean, well-documented code.'
});
// Execute a task
const result = await run(agent, 'Create a Python script called greet.py that prints Hello World');
console.log('Result:', result.finalOutput);
console.log('Session ID:', agent.currentThreadId);3. Run it
node my-first-agent.mjsYou’ll see the agent:
- Analyze the task
- Create the file
- Return a summary of what it did
Session continuity (automatic!)
One of Testbase’s key features is automatic session continuity. Multiple run() calls on the same agent continue the conversation:
// First task - new session
await run(agent, 'Create hello.py');
// Second task - continues the same session!
await run(agent, 'Add a main() function');
// Third task - still the same session!
await run(agent, 'Add error handling');
console.log(agent.currentThreadId); // Same ID throughout
// Start fresh when needed
agent.resetSession();
await run(agent, 'New project'); // New sessionAgent types
Testbase has two agent types:
Computer agents (agentType: 'computer'):
- Execute via Codex SDK
- Can read/write files, run commands, execute code
- Require a
runtime(LocalRuntime or CloudRuntime) - Must have a
workspace(git repository)
LLM agents (agentType: 'llm'):
- Execute via OpenAI API
- Good for planning, analysis, review
- No runtime needed
- No workspace required
Example LLM agent
import { Agent, run } from 'computer-agents';
const planner = new Agent({
name: 'Planner',
agentType: 'llm',
model: 'gpt-4o',
instructions: 'Create detailed implementation plans.'
});
const plan = await run(planner, 'Plan: Build a REST API for user management');
console.log(plan.finalOutput);Multi-agent workflows
Combine LLM and computer agents for sophisticated workflows:
import { Agent, run, LocalRuntime } from 'computer-agents';
// LLM agent creates the plan
const planner = new Agent({
agentType: 'llm',
model: 'gpt-4o',
instructions: 'Create implementation plans.'
});
// Computer agent executes the plan
const executor = new Agent({
agentType: 'computer',
runtime: new LocalRuntime(),
workspace: './project',
instructions: 'Execute implementation plans.'
});
// LLM agent reviews the result
const reviewer = new Agent({
agentType: 'llm',
model: 'gpt-4o',
instructions: 'Review code for quality and correctness.'
});
// Run the workflow
const task = 'Create a Python calculator with tests';
const plan = await run(planner, `Plan: ${task}`);
const implementation = await run(executor, plan.finalOutput);
const review = await run(reviewer, `Review: ${implementation.finalOutput}`);
console.log('Review:', review.finalOutput);Running examples
The repository includes several ready-to-run examples:
cd computer-agents/examples/testbase
# Basic computer agent (local)
node basic-computer-agent.mjs
# Cloud execution (requires API key)
TESTBASE_API_KEY=your_key node computer-agent-cloud.mjs
# Multi-agent workflow
node multi-agent-workflow.mjs
# Session continuity demo
node hello-world.mjsCommon issues
”Runtime required for computer agents”
Computer agents need a runtime. Add:
runtime: new LocalRuntime()“Not a git repository”
Codex SDK requires the workspace to be a git repository for safety:
cd my-project
git init
git add .
git commit -m "Initial commit"Or skip the check (not recommended):
skipGitRepoCheck: true“OPENAI_API_KEY not set”
Export your OpenAI API key:
export OPENAI_API_KEY=sk-...What’s next?
- Architecture - Understand how agents and runtimes work together
- Agents SDK - Dive into agent configuration and advanced patterns
- Cloud Platform - Learn about cloud execution with billing
- Quick Start Guide - More examples and troubleshooting
Full configuration reference
const agent = new Agent({
// Required
name: string;
agentType: 'llm' | 'computer';
// Computer agents only
runtime?: LocalRuntime | CloudRuntime; // Required for 'computer'
workspace?: string; // Required for 'computer'
// LLM agents only
model?: string; // e.g. 'gpt-4o', 'gpt-4o-mini'
tools?: ToolDefinition[];
// Optional for all
instructions?: string;
mcpServers?: McpServerConfig[]; // Unified MCP config
reasoningEffort?: 'none' | 'low' | 'medium' | 'high';
temperature?: number;
maxTokens?: number;
});You’re ready to build! Start with the examples and explore from there.